
Artificial Intelligence_AI

A Deep-Learning Algorithm-Enhanced

Electrocardiogram Interpretation for Detecting

Pulmonary Embolism

Yu-Cheng Chen,
1

Sung-Chiao Tsai,
2

Chin Lin,
3,4,5

Chin-Sheng Lin,
2

Wen-Hui Fang,
6

Yu-Sheng Lou,
3,4

Chia-Cheng Lee
7,8

and Pang-Yen Liu
2

Background: The early diagnosis of pulmonary embolism (PE) remains a challenge. Electrocardiograms (ECGs) and

D-dimer levels are used to screen potential cases.

Objective: To develop a deep learning model (DLM) to detect PE using ECGs and investigate the clinical value of

false detections in patients without PE.

Methods: Among patients who visited the emergency department between 2011 and 2019, PE cases were identified

through a review of medical records. Non-PE ECGs were collected from patients without a diagnostic code for PE.

There were 113 PE and 51,456 non-PE ECGs in the training and validation sets for developing the DLM, respectively,

and 27 PE and 13,105 non-PE cases in an independent testing set for performance validation. A human-machine

competition was conducted from the testing set to compare the performance of the DLM with that of physicians.

Receiver operating characteristic (ROC) curves, sensitivity, and specificity were used to determine the diagnostic

value. Survival analysis was used to assess the prognosis of the patients without PE, stratified by DLM prediction.

Results: The DLM was as effective as physicians in diagnosing PE, with 70.8% sensitivity and 69.7% specificity. The

area under the ROC curve of DLM was 0.778 in the testing set and up to 0.9 with D-dimer and demographic data.

The non-PE patients whose ECG was misclassified as PE by DLM had higher all-cause mortality [hazard ratio (HR)

2.13 (1.51-3.02)] and risk of non-cardiovascular hospitalization [HR 1.55 (1.42-1.68)] than those correctly classified.

Conclusions: A DLM-enhanced ECG system may prompt PE recognition and provide prognostic outcomes in patients

with false-positive predictions.
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INTRODUCTION

Pulmonary embolism (PE) is a potentially fatal dis-

ease that presents with nonspecific symptoms and signs.
1

Massive PE-compromised hemodynamic stability may

require urgent interventions to reverse the progressive

worsening of circulatory function. An early diagnosis can

be lifesaving, although it is highly challenging. Computed

tomographic pulmonary angiography (CTPA) is the me-

thod of choice to establish a definite diagnosis, espe-

cially in emergency settings, owing to its high accuracy

and short acquisition time.
2

However, it often takes hours

for patients in the emergency department (ED) to un-
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dergo computed tomography (CT) scan examinations. A

previous retrospective study disclosed that the median

time of this interval is approximately 3.5 hours for symp-

tomatic PE.
3

The limitation of CTPA is that it is expensive

and is only used in highly suspected cases. Therefore,

the development of routine examinations to screen po-

tential PE cases is necessary in clinical practice.

Electrocardiogram (ECG) is a rapidly acquired and

widely used diagnostic tool that is routinely used in the

ED. Several ECG changes caused by acute PE have been

reported since the early 20
th

century.
4

Sinus tachycardia,

atrial arrhythmia, inverted T waves in leads V1-V4, S1Q3T3

pattern, incomplete or complete right bundle branch

block, and other ECG characteristics are thought to be

associated with PE. However, the predictive value of PE

detection varies among studies and depends on disease

severity and the target population.
5,6

The scoring sys-

tems developed by Sreeram et al.
7

and Daniel et al.
5

have

low sensitivity, even in detecting PE with severe pulmo-

nary hypertension in the latter study. The diagnosis of

PE using ECG remains challenging. In recent decades,

neural network research has flourished, and deep learn-

ing models (DLMs) have been utilized in various fields. ECG

interpretation mainly involves detecting and extracting

morphological features, which are the strengths of neu-

ral networks. DLM-enhanced ECG interpretation has

been applied to detect many disorders.
8-18

An adequ-

ately trained DLM should be able to detect specific ECG

patterns for PE diagnosis, and may even reveal previ-

ously unrecognized features diagnosed by humans.

The current first-line clinical evaluation for suspected

PE relies on the clinical presentation and laboratory data,

especially D-dimer levels. D-dimer testing has been re-

ported to have a high negative predictive value, and a

normal D-dimer level makes the diagnosis of acute PE

unlikely.
2

However, a positive D-dimer test result cannot

be used to confirm the diagnosis of PE due to its low po-

sitive predictive value. Various causes including infec-

tion, inflammation, cancer, and pregnancy, can also in-

duce elevation of plasma D-dimer levels and account for

a large proportion of people visiting the ED. Considering

that other conditions associated with high D-dimer levels

may not exhibit ECG changes, ECG may provide additional

supportive evidence for identifying potential PE cases

with high D-dimer levels. Moreover, DLM-enhanced ECG

interpretation has been demonstrated to be able to iden-

Acta Cardiol Sin 2023;39:913�928 914

Yu-Cheng Chen et al.

Abbreviations

AF Atrial fibrillation

ALT Alanine aminotransferase

AMI Acute myocardial infarction

AST Aspartate aminotransferase

AUC Areas under the curve

AV Atrioventricular

BMI Body mass index

BNP Brain natriuretic peptide

BUN Blood urea nitrogen

CAD Coronary artery disease

CI Confidence interval

CK Creatine kinase

CKD Chronic kidney disease

Cl Chloride

COPD Chronic obstructive pulmonary disease

Cr Creatinine

CT Computed tomography

CTPA Computed tomographic pulmonary angiography

DLM Deep learning model

DM Diabetes mellitus

ECG Electrocardiogram

ED Emergency department

eGFR Estimated glomerular filtration rate

FOBT Fecal occult blood test

GLU Fasting glucose

Hb Hemoglobin

HF Heart failure

HLP Hyperlipidemia

HR Hazard ratio

HTN Hypertension

ICD International Classification of Diseases

IRB Institutional Review Board

K Potassium

Mg Magnesium

Na Sodium

OR Odds ratio

PE Pulmonary embolism

PLT Platelet

QRSd QRS duration

QTc Corrected QT interval

RBBB Complete right bundle branch block

ROC Receiver operating characteristic

SMOTE Synthetic minority over-sampling technique

TC Total cholesterol

tCa Total calcium

TG Triglyceride

TnI Troponin I

WBC White blood cell count

XGB eXtreme gradient boosting



tify the predictors of cardiovascular diseases by false-

positive predictions,
19

which further provides clinical prog-

nostic value.

In this study, we aimed to develop a DLM-enhanced

PE detection system and compare its accuracy to that of

physicians, which may help to prompt clinical awareness

and allow for the early diagnosis of PE. We also validated

the proposed detection system in a subset of patients

with high D-dimer levels.

METHODS

Population

In this single-center retrospective study, all data

were collected from the Tri-Service General Hospital,

Taipei, Taiwan, and the Institutional Review Board of

Tri-Service General Hospital approved the study (IRB

NO. C202005055). Patients who visited the ED between

December 2011 and December 2019 were included in

this study. Cases of PE were identified according to an

International Classification of Diseases, Ninth Revision

(ICD-9-CM) diagnosis code of 415.x or an ICD-10 code of

I26.xx. The diagnoses of the patients were confirmed by

reviewing their medical records. PE was defined on the

basis of CTPA, and suspected PE without CT was excluded.

Finally, 140 PE ECGs from 57 patients were included in

this study. Patients without PE were recruited from those

who visited the ED during the same period without the

diagnoses codes mentioned above, and 64,561 non-PE

ECGs from 36,201 patients were included in this study.

Figure 1 shows the process of generating the train-

ing, validation, and testing sets. The ECGs were assigned

at random, based on the patient level; therefore, no ECG

overlap was present in these datasets. The training set

included 96 PE ECGs from 37 patients and 37,847 non-

PE ECGs from 23,942 patients. The validation set in-

cluded 17 PE ECGs from 10 patients and 13,609 non-PE

ECGs from 6,765 patients. These were used to develop a

DLM for PE detection. An independent testing set in-

cluding 27 PE ECGs from 10 patients and 13,105 non-PE

ECGs from 5,494 patients was used to validate the DLM

performance. Within the testing set, the patients with

D-dimer values higher than 500 �g/L during their ED vi-

sits were included in a “high D-dimer” subset.

Data source

ECGs were recorded using a Philips 12-lead ECG ma-
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Figure 1. Establishment of the training, validation, and testing sets. This figure shows the schematic presentation of the dataset creation and

analysis strategy, which was devised to assure a robust and reliable dataset for training, validating, and testing of the network. Once an ECG was

placed in one of the datasets, that ECG was used only in that set, avoiding ‘cross-contamination’ among the training, validation, and testing datasets.

The details of the flow chart and how each of the datasets was used are described in the Methods. DLM, deep learning model; ECG, electrocardio-

gram; ED, emergency department; PE, pulmonary stenosis.



chine (PH080A) with a 500-Hz sampling frequency and

10 s in each lead. Quantitative measurements and find-

ings from the final ECG clinical reports were extracted to

identify 31 diagnostic pattern classes and eight continu-

ous ECG measurements. The eight ECG measurements

included heart rate, PR interval, QRS duration, QT inter-

val, correct QT interval, P wave axis, RS wave axis, and T

wave axis. Data for these variables were 90-100% com-

plete, and missing values were imputed using multiple

imputations with the fully conditional specification me-

thod using the Multivariate Imputation via Chained Equ-

ations algorithm, as described by Van Buuren and Gro-

othuis-Oudshoorn.
20

Each variable had its own imputa-

tion model. Built-in imputation models are provided for

continuous data (predictive mean matching, normal), bi-

nary data (logistic regression), unordered categorical

data (polytomous logistic regression), and ordered cate-

gorical data (proportional odds). Patterns included ab-

normal T wave (indicating reduced T wave amplitude,

both absolute and relative to the QRS, and negative T

waves), atrial fibrillation, atrial flutter, atrial premature

complex, complete atrioventricular (AV) block, complete

left bundle branch block, complete right bundle branch

block (RBBB), first degree AV block, incomplete left bun-

dle branch block, incomplete RBBB, ischemia/infarction,

junctional rhythm, left anterior fascicular block, left at-

rial enlargement, left axis deviation, left posterior fasci-

cular block, left ventricular hypertrophy, low QRS volt-

age, pacemaker rhythm, prolonged QT interval (QTc >

485 ms by either the Bazett formula or Fridericia for-

mula), right atrial enlargement, right ventricular hyper-

trophy, second degree AV block, sinus bradycardia, sinus

pause, sinus rhythm, sinus tachycardia, supraventricular

tachycardia (extreme tachycardia, > 220-age, with nar-

row QRS complex, QRSd < 120 ms, which did not fulfill

the criteria of other supraventricular rhythms, such as

sinus tachycardia, atrial fibrillation, atrial flutter, and

junctional tachycardia), ventricular premature complex,

ventricular tachycardia, and Wolff–Parkinson–White syn-

drome. The 31 clinical diagnostic patterns were parsed

from the structured findings statements based on key

phrases that are standard within the Philips system. De-

tailed definitions of the diagnostic patterns mentioned

above are described in the Philips DXL ECG Algorithm

Physician’s Guide. The corresponding electronic medical

records associated with each ECG in our hospital, includ-

ing medical records, nursing records, procedure records,

laboratory data, and imaging examinations, were also

collected for subsequent covariate and outcome extrac-

tion.

Implementation of the machine learning model

We previously developed an 82-layer convolutional

layer and attention mechanism architecture called

ECG12Net. Technology details including model architec-

ture, data augmentation, and model visualization have

been described previously.
17

Based on the same architec-

ture, we trained a new DLM to estimate the ECG-based

possibility of PE. Each original ECG signal length was

considered as a 12 � 5000 matrix. We randomly cropped

1,024 sequences as inputs in the training process. To

perform the random cropping process, a starting point

was randomly selected between the 1
st

and 3977
th

data

points of the ECG raw data using R’s built-in random-

sampling function. Subsequently, a segment with a length

of 1,023 data points, followed by the starting point, was

cropped as a training sample. For the inference stage,

nine overlapping lengths of 1,024 sequences based on

interval sampling were used to generate predictions

that were averaged as the final prediction as previously

described.
11,13

An oversampling process of directly duplicating the

minor sample was used in the training step because of

the low rate of PE in our dataset. An ECG signal is a con-

tinuous sequence and cannot be directly defined as an

independent feature vector. Thus, it is not suitable to

generate new ECG signal samples using an interpolating

algorithm such as the Synthetic Minority Over-sampling

Technique (SMOTE) method.

The settings for the training model were as follows:

(1) Adam optimizer with standard parameters (�1 = 0.9

and �2 = 0.999) and a batch size of 36 for optimization,

(2) learning rate of 0.001, and (3) a weight decay of 10
-4

.

The 100th epoch model was used as the final model,

which presented performance in the testing set that was

evaluated only once.

To compare the usage of ECG voltage-time traces

and the corresponding clinically reported ECG measures,

we trained an eXtreme gradient boosting (XGB) model

and elastic net using 31 diagnostic pattern classes and

eight ECG measurements to recognize PE in the training

set. Moreover, the XGB model and elastic net also pro-
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vided corresponding variable importance rankings to ex-

plore the relationships between the explainable features

and PE.

Study covariates and outcomes

The study covariates, including demographics, dis-

ease histories, and laboratory test results, were obtained

from the electronic medical records mentioned previously.

Patient demographics such as sex, age, body height, body

weight, body mass index (BMI), systolic blood pressure,

diastolic blood pressure, and presentation of chest pain

were extracted from medical and nursing records at the

ED visit (Supplementary Table 1). We used ICD-9 and

ICD-10 codes to define diabetes mellitus, hypertension,

hyperlipidemia, chronic kidney disease, coronary artery

disease, stroke, heart failure (HF), atrial fibrillation, and

chronic obstructive pulmonary disease (COPD). We col-

lected laboratory values from tests conducted in the ED,

including D-dimer, white blood cell count, hemoglobin,

platelet, sodium, potassium, chloride, total calcium, mag-

nesium, aspartate aminotransferase, alanine amino-

transferase, glucose, creatine kinase, creatinine, blood

urea nitrogen, troponin I, NT-pro-B-type natriuretic pe-

ptide, triglycerides, and total cholesterol. The 30-day

outcomes of interest included all-cause mortality, car-

diovascular disease-related mortality, cardiovascular-re-

lated hospitalization, and non-cardiovascular-related

hospitalization. Mortality was defined based on the elec-

tronic medical records of our hospital. Data for live visits

were censored at the patient’s last known hospital live

encounter to limit bias from incomplete records. All visits

were divided into admitted or non-admitted groups ac-

cording to hospitalization outcomes.

Human-machine competition

To evaluate the performance of our DLM, we con-

ducted a human-machine competition using a testing

cohort. The database contained 100 ECGs, including 24

PE cases and 76 non-PE cases. Five doctors participated

in the competition (two internal medicine residents, two

emergency medicine residents, and one cardiologist), all

of whom completed the tests through an online stan-

dardized data entry program without patient informa-

tion except the ECGs. We calculated the sensitivity, spe-

cificity, and Youden’s index of the doctors’ results for

comparison with those of the DLM.

Statistical analysis and model performance assessment

The analyses of patient characteristics and outcomes

were based on patients, and evaluation of the model per-

formance was based on ECGs. We analyzed the characteris-

tics and laboratory results of the patients with and without

PE in each dataset. The results are presented as means and

standard deviations for continuous variables and as num-

bers and percentages for categorical variables. We used the

Student’s t-test or chi-square test to compare the results be-

tween two groups, as appropriate, and p values < 0.05

were considered statistically significant. Statistical analy-

sis was performed using R version 3.4.4, and the package

MXNet version 1.3.0 was used to implement our DLM.

In the primary analysis, we compared the performance

of our DLM to that of human experts and two traditional

machine learning-based algorithms: the XGB model and

elastic net. In addition, an integrated XGB model that com-

bined demographic data (age, BMI, and sex), DLM pre-

diction, and D-dimer values was established through 5-fold

cross-validation. Receiver operating characteristic (ROC)

curves, areas under the curve (AUCs), and the McNemar

test were applied to evaluate the performance in PE recog-

nition of the DLMs, integrated model, and machine-learning

algorithms. The operating point was selected on the basis of

the maximum Youden’s index derived from the validation

set. To identify the relationships between clinical charac-

teristics and PE, and the characteristics that led to mis-

diagnosis by the DLMs, logistic regression was used to cal-

culate the odds ratio (OR) of each clinical characteristic.

In the secondary analysis, the non-PE ECGs in the

testing set were separated into “false-positive” cases

which were identified as PE ECGs by DLM, and “true-

negative” cases which were correctly identified as non-

PE ECGs. Kaplan-Meier survival analysis was performed

at the patient level with the available follow-up data

stratified by the DLM prediction for each outcome of in-

terest. Data were censored based on recent encounters.

Hazard ratios (HRs) were calculated using a Cox propor-

tional hazard model, and values with 95% confidence in-

tervals (95% CIs) were reported for all data.

RESULTS

The corresponding patient characteristics and labo-

ratory data for each ECG set are presented in Table 1. In
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the training set, the patients with PE were older than

those without PE (65.8 vs. 58.9 years, p = 0.038). There

were no statistically significant differences in sex and

BMI between the three sets. Among all three sets, D-

dimer values were significantly higher in the patients

with PE (9258.0 vs. 2195.5 �g/mL, p < 0.001 in the train-

ing set, 21000.0 vs. 2166.0 �g/mL, p < 0.001 in the vali-

dation set, and 8830.1 vs. 2712.5 �g/mL, p < 0.001 in

the testing set).

The PE recognition performances of the human phy-

sicians and each model are presented in Figure 2. In the

human-machine competition, the AUCs of the DLM, XGB

model, and elastic net were 0.765, 0.749, and 0.739, re-

spectively. When choosing the cutoff value with the

maximum Youden’s index (0.5704) from the validation

set, the DLM yielded 70.8% sensitivity and 69.7% speci-

ficity. The overall performance of all participating hu-

man physicians had a sensitivity ranging from 45.8% to

79.2% and specificity ranging from 48.7% to 80.3%. The

attending cardiologist had a Youden’s index of 0.27 with

a 62.5% sensitivity and approximately 64.4% specificity.

There was no significant difference between the human

and DLM performance in the competition. The detailed

results of the human-machine competition are provided

in Supplementary Figure 1. Among the whole testing

test, the DLM, XGB model, and elastic net had AUCs of

0.776, 0.729, and 0.722, respectively (Figure 3). When

the analysis focused on ECGs with corresponding D-

dimer values in the testing set, the AUCs of D-dimer, in-

tegrated model, DLM, XGB model, and elastic net were

0.866, 0.917, 0.778, 0.732, and 0.722, respectively. The

performance of the integrated model was statistically

better than that of D-dimer alone (p = 0.01). In the po-

pulation with a D-dimer value > 500 �g/L, the AUC va-

lues were 0.882, 0.758, 0.702, and 0.695, for the inte-

grated model, DLM, XGB model, and elastic net, respec-

tively. The performance of each lead in the testing set is

presented in Supplementary Figure 2, and their AUCs

ranged from 0.5558 to 0.7154, which was lower than

that of the combined results of all 12 leads.
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Figure 3. The performance of DLM, machine-learning algorithms, and integrated model in identifying PE ECG in the testing set and “High D-dimer”

subset. The operating point was selected based on the maximum Youden’s index obtained from the validation set. The sensitivity and specificity were

calculated using the testing set. AUC, area under the curve; DLM, deep learning model; ECG, electrocardiogram; PE, pulmonary stenosis; XGB, eX-

treme gradient boosting.

Figure 2. The performance of DLM, human experts, and machine-

learning algorithms in identifying PE ECG in a human-machine competi-

tion. The operating point was selected based on the maximum Youden’s

index obtained from the validation set. The sensitivity and specificity

were calculated using the testing set. CV-V: attending cardiologist. AUC,

area under the curve; DLM, deep learning model; ECG, electrocardio-

gram; PE, pulmonary stenosis; XGB, eXtreme gradient boosting.

A B C



A stratified analysis of the clinical picture of the pa-

tients with PE in the training set is presented as the for-

est plot in Supplementary Figure 3. Most of the differ-

ences between the patients with and without PE were

non-significant, except for age, HF, serum creatinine, so-

dium, and chloride levels. When focusing on misclas-

sified non-PE ECGs in the testing set, the results of the

stratified analysis (Supplementary Figure 4) indicated

that ECGs of older patients (OR 1.2, 95% CI 1.13-1.28)

and those with HF (OR 1.39, 95% CI 1.14-1.68), atrial fi-

brillation (OR 1.69, 95% CI 1.33-2.14), and COPD (OR

1.20, 95% CI 1.02-1.40) had a higher chance of being

misclassified as PE. Regarding laboratory values, this

group of patients had lower serum electrolyte levels,

lower hemoglobin values, and higher WBC counts.

To further understand the key features in PE recog-

nition, we calculated the importance of various ECG fea-

tures in traditional machine-learning models, as shown

in Figure 4. The highest ranked features in the XGB mo-

del were “T wave axis,” “corrected QT interval,” and “RS

wave axis.” In the elastic net, “corrected QT interval,” “T

wave axis,” and “QT interval” had the highest relative

importance.

We reviewed the ECG presentations in the human-

machine competition (Figure 5). Figure 5A shows that

sinus tachycardia and the S1Q3T3 pattern were correctly

recognized as PE by all physicians and the DLM. ECG has

the morphologies of a prolonged correct QT interval

(QTc) and negative T wave axis. Interestingly, the sali-

ency map revealed that the DLM mainly focused on the

QT and PR segments (Figure 5B). The PE ECG in Figure

5C presents a normal sinus rhythm, prolonged QTc, and

left axis deviation of the QRS complex (-25�) and T wave

(-82�), which were misdiagnosed by physicians but cor-

rectly recognized by the DLM with a focus on the QT

segment in the saliency map (Figure 5D). The ECGs in

Figure 5E and F were obtained from a patient without

PE. They show atrial fibrillation with RBBB morphology

and a premature ventricular complex. The QRS complex

had an extreme axis deviation (-93�). No specific seg-
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Figure 4. Related feature importance ranking in the XGB model (information gain) and elastic net (standard coefficient). There are only the top 20

important variables in each model. The red color demonstrates the positive relationship between variables and PE, and the blue color, in contrast,

demonstrates the negative relationship. XGB, eXtreme gradient boosting.



ment or pattern focused on by the DLM could be identi-

fied in Figure 5F. This ECG was considered non-PE by all

physicians but misclassified as PE by the DLM.

We then performed a 30-day outcome analysis (Fig-

ure 6), including mortality and hospitalization events.

Cases of non-PE that were misidentified as PE, meaning

“false-positive” cases, were compared with “true-nega-

tive” cases in which non-PE cases were correctly classi-

fied. CVD mortality was not significantly different be-

tween the two groups (HR 1.31, 95% CI 0.34-5.06, p =

0.696). However, the “false-positive” group had signifi-

cantly higher all-cause mortality (HR 2.13, 95% CI 1.51-

3.02, p < 0.0001) than the “true-negative” group. There

was no difference in CV hospitalization (HR 1.07, 95% CI

0.76-1.51), but there was a significantly higher non-CV

hospitalization rate in the “false-positive” group (HR 1.55,

95% CI 1.42-1.68).

DISCUSSION

In this study, we developed a DLM with compatible

performance in distinguishing PE ECGs from first-line

physicians and traditional machine learning algorithms.

In addition, we found that an integrated model includ-

ing DLM, demographic data, and D-dimer values could

provide better performance than each model alone. In

further analysis of the clinical characteristics of the mis-
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Figure 5. Three ECGs, which were identified as PE by DLM, and their saliency map. (A, B) From patient with PE and was recognized as PE by all phy-

sicians and DLM. (C, D) From patient with PE and was thought to be non-PE by three of five physicians but as PE by DLM. (E, F) From patients without

PE classified as non-PE by all five physicians but as PE by DLM. DLM, deep learning model; ECG, electrocardiogram; PE, pulmonary stenosis.

A B

C D

E F



classified cases, we found that some physical factors and

comorbidities influenced PE recognition in the DLM. The

results of the survival analysis indicated that patients

without PE whose ECGs were recognized as PE by the

DLM had higher mortality and hospitalization rates re-

lated to underlying comorbidities other than cardiovas-

cular diseases.

Regarding conventional screening tools, examina-

tions such as mammography and fecal occult blood tests

(FOBTs) have similar costs and acquisition times as ECGs.

In a previous report, digital mammography yielded a

sensitivity ranging from 69% to 86% and specificity rang-

ing from 57% to 94%.
21

FOBTs can achieve a sensitivity

or specificity above 90%, but at the expense of the

other, which is lower than 40%.
22

Our DLM had a sensi-

tivity and specificity of more than 70% for PE recogni-

tion. When adding histories, clinical symptoms and signs,

and laboratory examinations, it can be effective in help-

ing with the early identification of PE in either the ED or

places where advanced tools are not available.

After a detailed review of ECGs in the human-ma-

chine competition, some morphological features were

found to be helpful in PE recognition. In addition to pro-

longed QTc and negative T wave axis, a negative QRS

complex axis seemed to play a role in PE recognition in

the DLM, similar to the importance ranking in the XGB
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Figure 6. 30-day outcomes of developing mortality and hospitalization events in patients without PE stratified by DLM prediction. The patients

without PE who were misidentified as PE by DLM were labeled “DLM-PE”. In contrast, those who were not were labeled “DLM-non PE”. CV, cardiovas-

cular; DLM, deep learning model; PE, pulmonary stenosis.



model. Features such as tachycardia and RBBB, which

are less important in the XGB and elastic net models,

may also have been considered in the DLM. These find-

ings may partially explain why the XGB and elastic net

models had similar performances as the DLM, and high-

light the blind spots in PE recognition by humans. How-

ever, it remains unclear which features were identified

by the DLM and how the relative importance of each

feature led to better performance of the DLM compared

to the traditional machine learning algorithms.

Similar to the role of D-dimer, the manifestations of

ECG provide unspecific clues to diagnose PE, which is

also present in the ECGs of patients with other morbidi-

ties. Our stratified analysis showed that patients with

older age, HF, atrial fibrillation, and COPD were more li-

kely to be misclassified as PE by the DLM. These false-

positive patients had a higher risk of all-cause mortality

and non-CV hospitalization compared to the true-nega-

tive patients, indicating that the DLM learned to identify

the PE-associated physiologic or anatomic abnormali-

ties, including right ventricular overloading, tachycardia,

and abnormalities of ST interval, during the training pro-

cess. The abnormal ECG patterns revealed morbidities

which may have included but are not limited to the dis-

eases mentioned above in those patients. Taken toge-

ther, these results may partly explained the higher rates

of complications, non-CV hospitalizations, and mortality

in the false-positive patients.

The concept of “point-of-care testing” has developed

over the years. The use of DLMs in critical illness recog-

nition, such as PE, can provide timely warnings to he-

althcare providers and allow rapid-response teams to

become involved in patient care much earlier. The high

availability of ECG makes our DLM-enhanced PE detec-

tion system especially helpful in places where health-

care resources, such as blood examinations and ad-

vanced imaging examinations are lacking. Additionally, a

combination of ECG and laboratory data can be used to

develop a rapid rule/out protocol of PE in the future.

This can help to reduce unexpected complications and

mortality during clinical practice. When not used for PE

identification, DLMs can still provide a predictive value

for clinical prognosis. Clinicians can adjust their thera-

peutic strategy and strength to achieve better control of

patient comorbidities and reduce feature deaths.

Our study has some limitations. First, this was a sin-

gle-hospital retrospective study. A prospective study of

multiple independent emergency services will be help-

ful in validating our DLM-enhanced PE detection system.

Second, the number of patients with PE was small due

to the rarity of the disease. Consequently, the small num-

ber of ECGs for DLM development and validation may

have influenced the final performance of the DLM. Third,

the number of physicians, especially attending physicians,

who joined the competition was limited and may not re-

present actual human performance. Finally, traditional

machine learning models revealed some relationships

between the explainable features and ECG morphologies.

The “black box” effect of exact ECG morphology identi-

fied by the DLM still remains.

CONCLUSIONS

In summary, our proposed DLM-enhanced PE detec-

tion system was shown to be an effective and automatic

tool to rapidly screen patients with potential PE in ei-

ther in-hospital or out-of-hospital settings, and could be

used to promptly alert first-line physicians. False-posi-

tive recognition in patients without PE could help he-

althcare professionals to predict the prognosis and help

guide treatment strategies.
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Supplementary Table 1. Corresponding patient demographics of the training, validation, and testing sets

Human-machine competition “High D-dimer” subset

PE (n = 10) Non-PE (n = 66) p value PE (n = 9) Non-PE (n = 715) p value

Demographic data

Sex (male) 7 (53.8%) 44 (65.7%) 0.531* 6 (50.0%) 396 (53.0%) 0.836*

Age (years) 63.0 � 15.5 61.6 � 24.1 0.901* 59.2 � 18.2 71.0 � 17.0 0.023*

BMI (kg/m
2
) 26.7 � 4.00 22.5 � 3.50 0.062* 26.0 � 4.6 24.5 � 8.30 0.355*

Disease histories

AMI 1 (7.7%)0 6 (9.0%) 1.000* 0 (0.0%)0 53 (7.1%) 1.000*

Stroke 2 (15.4%) 12 (17.9%) 1.000* 2 (16.7%) 213 (28.5%) 0.525*

CAD 6 (46.2%) 28 (41.8%) 0.771* 4 (33.3%) 258 (34.5%) 1.000*

HF 4 (30.8%) 16 (23.9%) 0.727* 3 (25.0%) 163 (21.8%) 0.731*

AF 1 (7.7%)0 10 (14.9%) 0.682* 0 (0.0%)0 091 (12.2%) 0.378*

DM 4 (30.8%) 21 (31.3%) 1.000* 2 (16.7%) 284 (38.0%) 0.228*

HTN 7 (53.8%) 33 (49.3%) 0.762* 5 (41.7%) 416 (55.7%) 0.332*

CKD 1 (7.7%)0 08 (11.9%) 1.000* 0 (0.0%)0 168 (22.5%) 0.079*

HLP 3 (23.1%) 19 (28.4%) 1.000* 2 (16.7%) 272 (36.4%) 0.228*

COPD 4 (30.8%) 18 (26.9%) 0.745* 4 (33.3%) 193 (25.8%) 0.520*

Laboratory data

D-dimer (�g/L) 8035.5 � 6420.2 2734.6 � 5580.5 0.002* 8830.1 � 6711.7 4529.2 � 6966.9 0.001*

eGFR (mL/min/1.73 m
2
) 53.7 � 17.9 71.8 � 33.1 0.032* 67.3 � 30.1 64.5 � 41.7 0.737*

Cr (mg/dL) 1.9 � 2.3 1.5 � 1.5 0.114* 1.1 � 0.3 1.9 � 2.2 0.834*

BUN (mg/dL) 18.0 � 8.9 30.3 � 26.1 0.174* 16.1 � 8.6 32.4 � 28.6 0.009*

Na (mmol/L) 135.8 � 3.6 135.5 � 4.3 0.920* 136.3 � 3.1 135.6 � 6.300 0.906*

K (mmol/L) 3.9 � 0.5 4.1 � 0.7 0.844* 3.8 � 0.3 4.1 � 0.8 0.402*

Cl (mmol/L) 106.8 � 8.0 99.7 � 5.4 0.128* 110.3 � 2.3 101.6 � 7.100 0.012*

tCa (mg/dL) 8.2 � 0.6 8.7 � 0.5 0.014* 8.2 � 0.6 8.5 � 0.6 0.324*

Mg (mg/dL) 2.1 � 0.3 2.1 � 0.3 0.731* 2.0 � 0.3 2.1 � 0.4 0.512*

TnI (pg/mL) 113.7 � 172.7 147.9 � 672.0 0.016* 258.0 � 413.3 0874.3 � 6456.4 0.045*

CK (U/L) 098.5 � 108.3 122.4 � 133.3 0.327* 103.3 � 113.4 0225.7 � 1011.0 0.493*

BNP (ng/mL) 0941.4 � 1229.4 816.1 � 1012.4 0.503* 563.5 � 633.9 0637.4 � 1056.8 0.690*

GLU (g/dL) 150.9 � 75.70 147.0 � 62.3 0.735* 135.5 � 70.30 166.9 � 99.80 0.105*

Hb (g/dL) 13.3 � 2.10 12.8 � 2.4 0.458* 14.1 � 0.90 11.6 � 2.60 0.001*

WBC (10
3
/�L) 9.4 � 2.9 8.8 � 3.2 0.390* 9.4 � 2.6 11.2 � 20.5 0.912*

PLT (10
3
/�L) 209.7 � 95.20 200.8 � 66.50 0.833* 182.7 � 49.30 231.4 � 108.3 0.119*

AST (U/L) 23.5 � 10.1 33.6 � 57.6 0.704* 23.2 � 10.3 050.5 � 125.7 0.154*

ALT (U/L) 14.2 � 7.90 39.9 � 50.0 0.175* 14.6 � 6.90 33.7 � 79.8 0.263*

TG (g/L) 127.4 � 46.20 174.7 � 135.1 0.947* 119.8 � 45.30 111.2 � 70.10 0.323*

TC (g/L) 164.9 � 45.80 150.0 � 42.00 0.266* 170.2 � 40.30 141.3 � 44.80 0.020*

* p value calculated with n < 25 in continuous variables or by Fisher’s exact test for categorical variables.

AF, atrial fibrillation; ALT, alanine aminotransferase; AMI, acute myocardial infarction; AST, aspartate aminotransferase; BMI, body

mass index; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; CAD, coronary artery disease; Cl, chloride; CK, creatine

kinase; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; Cr, creatinine; DM, diabetes mellitus; eGFR,

estimated glomerular filtration rate; GLU, fasting glucose; Hb, hemoglobin; HF, heart failure; HLP, hyperlipidemia; HTN,

hypertension; K, potassium; Mg, Magnesium; Na, sodium; PE, pulmonary embolism; PLT, platelet; TC, total cholesterol; tCa, total

calcium; TG, triglyceride; TnI, troponin I; WBC, white blood cell count.
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Supplementary Figure 1. The detailed answers of the human-machine competition from each human expert and the DLM prediction. ECGs that

were thought to be PE were labeled “risk” with a red background, and those that were not were labeled “normal” with a green background. The DLM

prediction value of each ECG is labeled in the “DLM” column. DLM, deep learning model; ECG, electrocardiogram; PE, pulmonary stenosis
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Supplementary Figure 2. The ROC of each single lead of 12-lead ECG in PE prediction. The operating point was selected based on the maximum

Youden’s index obtained from the validation set. The sensitivity and specificity were calculated using the testing set. AUC, area under the curve; ECG,

electrocardiogram; PE, pulmonary stenosis; ROC, receiver operating characteristic.
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Supplementary Figure 3. Forest plot presents the stratified analysis of

the characteristics of patients with and without PE in the training set.

AF, atrial fibrillation; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; BMI, body mass index; BNP, brain natriuretic peptide;

BUN, blood urea nitrogen; CAD, coronary artery disease; COPD, chronic

obstructive pulmonary disease; CK, creatine kinase; CKD, chronic kidney

disease; Cl, chloride; Cr, creatinine; DM, diabetes mellitus; eGFR, esti-

mated glomerular filtration rate; GLU, fasting glucose; Hb, hemoglobin;

HF, heart failure; HLP, hyperlipidemia; HTN, hypertension; K, potassium;

Mg, Magnesium; Na, sodium; PLT, platelet; TC, total cholesterol; tCa, to-

tal calcium; TG, triglyceride; TnI, troponin I; WBC, white blood cell count.

Supplementary Figure 4. Forest plot presents the stratified analysis of

patient characteristics in non-PE cases within the testing set according

to DLM prediction. AF, atrial fibrillation; ALT, alanine aminotransferase;

AST, aspartate aminotransferase; BMI, body mass index; BNP, brain

natriuretic peptide; BUN, blood urea nitrogen; CAD, coronary artery dis-

ease; COPD, chronic obstructive pulmonary disease; CK, creatine kinase;

CKD, chronic kidney disease; Cl, chloride; Cr, creatinine; DM, diabetes

mellitus; eGFR, estimated glomerular filtration rate; GLU, fasting glu-

cose; Hb, hemoglobin; HF, heart failure; HLP, hyperlipidemia; HTN, hy-

pertension; K, potassium; Mg, Magnesium; Na, sodium; PLT, platelet; TC,

total cholesterol; tCa, total calcium; TG, triglyceride; TnI, troponin I;

WBC, white blood cell count.


